University of Victoria
Faculty of Engineering
Spring 2003 Work Term Report

Extending Grid Computing in Canada:
Federating Grid Canada and LCG

Department of Physics and Astronomy
University of Victoria
Victoria, Canada

Alexandros Dimopoulos
0027220
Electrical Engineering
adimopou@engr.uvic.ca

April 2003

In Partial Fulfillments of the Requirements of the B.Eng. Degree

Supervisor’s Approval: To be completed by Co-op Employer
I approve the release of this report to the university of Victoria for evaluation purposes only

This report is to be considered JNOT CONFIDENTIAL OJCONFIDENTIAL

Signature Position Date

Name(print) email Fax#

Abstract

New high energy physics experiments are requiring computing re-
sources many times larger than those in existence. To meet their needs,
they are turning to an emerging technology called computational grids
which link many distributed computers together. Many groups around
the world are actively deploying grids on regional, national, and inter-
national scales. If several grids are linked or ”federated”, then a larger
computational power can be unleashed. An attempt was made to federate
two dissimilar grids: LCG and Grid Canada using a centralized resource
broker and job queue with promising results.

Contents
1 Introduction

2 discussion
2.1 The Generic Grid Architecture
2.2 The Globus Toolkit

221 GSI ...
222 GRAM
2.3 Description of a Couple of Grids
231 LCG

232 GridCanada
2.3.3 Why Federate these Grids?
2.4 The Grid Canada Resource Broker
2.4.1 The Previous Resource Broker
2.4.2 The Need for a New Resource Broker
2.4.3 Designing a New Resource Broker
2.4.4 Building the New Resource Broker
2.4.5 Results

3 Conclusions

4 Recommendations

List of Figures

1 Job submission under the old Grid Canada resource broker. . . .
2 Job migration in the LCG-Grid Canada link.

ii

10

10

1 Introduction

The standard model has been one of the most successful theories of modern
physics. It describes how fundamental particles are composed, as well as many
of their interactions. However, several important questions about the nature of
matter remain unanswered, such as what causes mass? It is theorized that mass
is due to interactions with a field which permeates space called the Higgs field,
and its associated particle, the Higgs boson [1].

For the past 12 years [2], some 2000 physicists from 34 countries have been
collaborating to create the ATLAS detector which will begin searching for the
elusive Higgs boson in 2007. The ATLAS experiment will use the new Large
Hadron Collider (LHC) located at the CERN laboratory in Geneva, Switzerland.
ATLAS is one of the largest, most expensive undertakings in scientific history
and has been pushing technological boundaries since its inception.

One of these boundaries is computation. ATLAS will collect an enormous
amount of data, an estimated 12-14 PB per year. The analysis of this data will
require some 70 000 modern day equivalent CPUs [3]. Even when taking Moore’s
law into account, ATLAS will require huge computational resources while it is
running. Additionally, the data, as well as these computational resources will
have to be accessible to thousands of researchers spread all over the world.
No existing computing facility can meet these requirements, and building one
would be prohibitively expensive. Instead, ATLAS will use a new paradigm, the
computational grid, to construct a virtual super computer. This will be done by
seamlessly linking the computing facilities of the various organizations taking
part in ATLAS; this is no small feat, as they are spread over the globe and are
administered according to different sets of rules.

Across the world, there are regional efforts to build local computing grids,
among them is Grid Canada. CERN is also constructing a grid, the Large
hadron collider Computing Grid (LCG). Theses various grids are designed and
implemented along different principles and standards, and are not necessarily
compatible. In order to utilize these computing resources to their maximum
capacity, various grids will have to be linked, or ”federated”.

This report briefly describes the generic grid architecture, the structure of
Grid Canada, and an effort to federate Grid Canada and LCG.

2 discussion

2.1 The Generic Grid Architecture

The computational grid derives its name from the electrical power grid, which
it resembles on a conceptual level. In both structures, resource consumers (of
electrical power, or of computer cycles) are linked transparently across geo-
graphical and administrative domains to resource providers. In a power grid,
generators in British Columbia and Oregon may power the lights for someone
living in San Francisco. In a computational grid, a physicist at the Univer-
sity of Toronto may analyze data stored in the UK using computers in Japan
and France. In both cases, the only resource the consumer sees is a nebulous
structure called the grid. There no need to know where the resources are actu-
ally coming from to be able to exploit them. And in both cases, the resource
providers are distributed geographically and administer their facilities accord-
ing to different rules (such as government regulations for the power utilities and
security settings for the computer clusters).

At the core of the grid is the concept of the virtual organization (VO). Unlike
conventional networks, such as the world wide web, grids revolve around sharing
actual computing infrastructure, not just information. Such sharing requires
strict controls over who gets to use what, when, and how. A set of users who
agree upon, and abide by a set of rules governing this sharing is called a VO.
For grids to be powerful, they need to be easy to implement and use, this means
that VOs must be scalable and be able to include anyone. This leads to a design
modeled on a hourglass shape. At the top are the many different applications
for the grid, at the bottom are the various infrastructures on which the grid is
built, and in the middle are the small number of protocols and services which
link the two ends.

Using this hourglass model, the grid architecture has four layers: fabric, con-
nectivity, resource, collective, and application.

The fabric layer, as its name suggests, is the lowest layer. It consists of the
actual resources upon which the grid is built, such as computational, storage,
and network facilities. Elements composing this layer should have the capability
to report their structure, state, and capabilities. This layer forms the bottom
of the hourglass.

The connectivity layer enables grid specific network transactions. This layer
has two parts. The first concerns connecting various fabric elements over net-
works, this can be accomplished with the existing TCP/IP protocols. The
second is authentication, the identities of users and resources need to be veri-
fied in a secure fashion. Significantly, the authentication should provide users
with single sign on and delegation capabilities. Single sign on allows users to

log in to the entire grid just once per session without any further need to man-
ually authenticate with individual fabric elements. Delegation allows a user’s
application to run on the grid on that user’s behalf.

The resource layer consists of protocols, APIs and SDKs which govern the
secure initiation, monitoring, control, accounting, and payment of jobs on indi-
vidual resources. This layer is only concerned with connecting to single fabric
elements, not with the bigger picture. Together, the connectivity and resource
layers form the neck of the hourglass.

The collective layer forms the beginning of the top of the hourglass. This layer
does not concern any one fabric element, but rather a collection of these, and is
where the grid takes form. This layer implements services like directories which
allow VO members to discover resources, and resource brokers which match jobs
and grid resources.

Finally, at the top of the hourglass is the application layer. This layer consists
of the actual user applications which run on the grid using the other four layers.

2.2 The Globus Toolkit

Over the past few years, the Globus Toolkit has become the de facto standard
implementation of several of the grid layers described above. This set of software
is produced by the Globus Alliance, a partnership between Argonne National
Laboratory, the University of Southern California, the University of Chicago,
the University of Edinburgh, and the Swedish Center for Parallel Computers.

The parts of the Globus Toolkit which are of main interest for this report are
GSI and GRAM, the implementations of the connectivity and resource layers
(the neck of the hourglass).

2.2.1 GSI

GSI (Grid Security Infrastructure) implements the authentication part of the
connectivity layer (TCP/IP is used for actual connectivity) [6]. The GSI is
based on public key cryptography and certificates encoded in the X.509 format.
Every member of a grid, whether a user or a resource, receives a certificate.
A certificate consists of a subject name which identifies the person or resource
which holds it, the subject’s public key, the identity of the signing certificate
authority (CA), and the CA’s digital signature. The CA is a third party which
issues and guarantees the validity of certificates. It is a good idea for each VO
to set up its own CA.

Suppose that Alice wants to simulate a proton collision over her grid, and her
job gets sent to a linux cluster called Bob. Before Alice can use Bob, the two
must mutually authenticate to ensure that they really are who they claim to
be. First, both Alice and Bob need to have the CA’s public key so that they
can check the CA’s signature on each other’s certificates. Using SSL, Alice will
send her certificate to Bob. Bob will first use its copy of the CA’s public key
to make sure that Alice’s certificate is valid by checking the CA’s signature on
it. Next, Bob will generate a random message which is sent to Alice. Using her
private key, Alice will encrypt the message and send it back to Bob. If Bob can
get its message back with Alice’s public key, then Alice’s identity is verified.
Alice would then verify Bob’s identity in the same manner.

The GSI handles single sign on and delegation with proxy certificates. With
the use of a password, a user can create such a proxy which is valid for a limited
time. The proxy uses a slightly altered version of the owner’s subject to identify
it as a proxy certificate. A new set of keys is created and the owner signs
the proxy. This time-limited proxy is used along with the user’s certificate for
authentication purposes, and the proxy is used to run jobs and access resources
on the user’s behalf. Thus after entering a single password, a user can access
any resource on a grid to which he is entitled. In theory, a proxy could then
create another proxy and thus a singe job could fork many children which could
run all over the grid on behalf of the user. This however does not take place
and will be discussed later.

2.2.2 GRAM

GRAM (Grid Resource Allocation Manager) is the Globus implementation
of the resource layer [7]. GRAM simplifies job submission and control by pro-
viding a uniform interface to local job scheduling systems on grid computing
elements. On the resource side, a job manager is implemented for the local job
scheduling system (such as PBS or Condor). A job manager is a Perl module
which defines a set of subroutines that wrap around the local job scheduler’s
interface, allowing GRAM to submit jobs to the local machine. This allows the
user which is submitting jobs to be completely abstracted from all aspects of a
computing element’s local environment. GRAM does not provide any facilities
for matching jobs to resources, this is taken care of in the collective layer which
is not implemented here.

2.3 Description of a Couple of Grids
2.3.1 LCG

To handle the anticipated computing needs of various LHC experiments, such
as ATLAS, CERN is overseeing the development of a global computational grid
called the LHC Computing Grid (LCG). This grid is to handle the simulation,
processing, and analysis of data collected for LHC experiments. This is a world

wide project comprising of computing centers around the world. A major design
feature of this grid is that all participating resources must be fully dedicated
to LCG. In other words, resources may only run jobs from LCG and nothing
else. This requirement makes it impossible for facilities which are shared by
several research groups (such as the University of Victoria’s Mercury cluster) to
participate.

2.3.2 Grid Canada

Grid Canada is a partnership between CANARIE, the National Research
Council (NRC), and C3.ca to build a Canada wide grid. The grid fabric is
currently comprised of three computing facilities spread across Canada: Mercury
at the University of Victoria, Thuner-gw at the University of Alberta, and
Mercury at the NRC in Ottawa. The development effort is lead by Dr. Randall
Sobie’s group in the department of Physics and Astronomy at the University
of Victoria. Grid Canada is following a design philosophy which is opposite to
LCG’s. This grid uses only shared facilities, not one is dedicated to only running
Grid Canada jobs. The intent is to put as few requirements on participating
sites as possible, and to essentially use up their spare resources.

2.3.3 Why Federate these Grids?

Since all of Grid Canada’s resources are shared among different researchers,
they cannot become part of LCG. However, Canadian ATLAS members would
still like to use these shared facilities to run computing jobs pertinent to ATLAS.
The problem is that these are run on LCG. The solution is to federate Grid
Canada and LCG so that jobs submitted to LCG can be seamlessly transferred
and run on Grid Canada.

2.4 The Grid Canada Resource Broker

A grid’s resource broker (RB) is part of the collective layer in the architecture.
It is the component which matches jobs to resources, acting as a middleman (or
broker) between users and individual resources. Any scheme to federate grids
has to be intimately connected to their resource brokers.

2.4.1 The Previous Resource Broker

The existing resource broker for Grid Canada had been implemented on a
centralized model [8]. All jobs submitted to Grid Canada had to be passed to
a single resource broker which then submitted them to resources. By default,
GRAM client libraries are configured to only allow delegation of limited proxies.
Such a proxy cannot re-delegate other proxies. The result is that a job can
only be sent to a single resource using GRAM without the ability to migrate
somewhere else. In this case, if jobs were sent to the resource broker using
GRAM, they would be stuck there and never reach a resource. Since no way had
been found to allow a user to delegate a full proxy, a workaround was made using

a MySQL database. A user would enter his job and full proxy certificate file into
a centralized MySQL database. The resource broker, which was running as a
cron job on the machine where the database resided, would query a GIIS (Grid
Index Information Service) server to find acceptable resources, then submit
the job to one of them. A GIIS is a database where grid resources publish
information such as their names, capabilities, and statuses. This system is
illustrated below in figure 1.

1 Thejobisentered into @
the database when it is Job Database

submitted 3 The RB submits

the job to the resource
and updates its status
in the database

2 The RB queriesthe GIIS
to find a proper resource

4 The resource updates
itsstatusin the GIIS

Resource

Figure 1: Job submission under the old Grid Canada resource broker.

2.4.2 The Need for a New Resource Broker

A major problem with the existing resource broker was its enormous security
vulnerability. The entire PKI (public key infrastructure) used in the Globus
Toolkit was circumvented with the MySQL database. Other than the fact that
no mutual authentication was needed to access the database, the password to
access it was in the Perl script which acted as the client submission tool. Fur-
thermore, this password was the same one used by the resource broker, which
means that anyone accessing the database with it could not only make new
entries, but modify existing ones.

The specialized interface to the resource broker would have made it difficult
to link easily with other grids. LCG would most likely have to gain access to
Grid Canada through its resource broker in order to ensure that Grid Canada
could maintain control over its resources. LCG (and most others) uses GRAM
to communicate among elements, how would it talk to Grid Canada’s RB?

The resource broker was not extensible enough so a new one had to be de-
signed and implemented if Grid Canada and LCG were to be federated.

2.4.3 Designing a New Resource Broker

TRIUMEF, located in Vancouver, is to be the main Canadian LCG site, thus it
made sense to try to federate the two grids at this point. After consulting with
some members of the Simon Fraser University (SFU) Department of Physics
who are involved in setting up TRIUMF for LCG, an overall architecture was
arrived at. TRIUMF was going have several regional computing facilities at

its disposal for executing LCG jobs, so it was going to have its own resource
broker. It was decided that this resource broker would send jobs to a new Grid
Canada resource broker using GRAM. Grid Canada was to look as just another
computing facility to TRIUMF, and TRIUMF was to appear as just another
user to Grid Canada. This is illustrated in figure 2.

TRIUMF
CERN - RB

Grid Canada)

TRIUMF ;
Grid Canada user

resource RB

Grid Canada Grid Canada Grid Canada
resource resource resource

Figure 2: Job migration in the LCG-Grid Canada link.

The new Grid Canada broker could be centralized like the old one, or it could
be decentralized. In a decentralized model, the job submission client is also
the resource broker. It queues jobs, decides where to submit them, and then
sends them off. The main advantage of this scheme is its robustness. Because
each and every grid user has his or her own personal broker, the grid does not
become paralyzed if one of them fails. However, it is very difficult to monitor
the status of the entire grid in such a model. Because there is no centralized
job queue, it is difficult to ascertain the total number of jobs submitted to the
grid or their status. Conflicts between resource brokers would also arise. If two
users with ten jobs between them simultaneously select the same resource which
has the capacity to accept another six jobs, who has priority? Whose jobs get
submitted first? How many of each user’s jobs get submitted? How is all this
decided?

If the centralized model was again chosen, then the system would still have
a critical point of failure. However, complicated problems like inter-broker con-
flicts would be avoided. Such a system with a single queue would be easier
to monitor. It would also be easier to update and modify since only one copy
would have to be changed, instead of having to ensure that every user has the
most up to date version of the software.

There was also a third option which was briefly considered: a centralized
broker with reserved ticketing. In such a system, users contact a centralized

broker to request resources for their jobs. When the broker finds a suitable
facility, it contacts it and reserves certain resources on the user’s behalf. The
broker then sends a ticket to the user which specifies the reserved resources.
Using this ticket, the user then claims his reservation and submits his jobs. Like
the centralized model, this allows for easy monitoring, but it is very scalable
since the resource broker does not manage a job queue. Implementing a ticketing
system is not trivial as there are major security issues to address.

In the end, the centralized model was chosen. It could adequately handle the
work load since Grid Canada is not very large. It was also the most straight-
forward to implement.

2.4.4 Building the New Resource Broker

One option was to essentially reimplement the existing resource broker so that
it would have a GRAM jobmanager. When submitting a job, a user would send
it with GRAM to this jobmanager. The jobmanager would then insert the job
into the database and the resource broker would then take care of the rest.

A more attractive solution was put forward by one of the SFU physicists,
Dr. Rodney Walker. He was implementing TRIUMF’s RB, and planned to
use Condor-G to do so. Condor [9] is a powerful batch system which has been
developed over the past 15 years at the University of Wisconsin-Madison’s De-
partment of Computer Science. A very attractive feature of Condor is its very
flexible mechanism for matching jobs to resources. Condor-G is Condor ex-
tended to use the Globus Toolkit. Condor can manage jobs only on pools of
local machines, say within a university. Condor-G is intended to extend these
pools to include remote resources using GRAM. Condor provided a sophisticated
queuing system and a resource broker with its matchmaking system. All that
was needed was a jobmanager and some nonconventinal configuring of Condor.

The jobmanager was relatively easy to develop. There already existed a reg-
ular Condor jobmanager to allow jobs to be submitted to a resource’s condor
queue. With a few modifications, this jobmanager could be used for our pur-
poses.

A major obstacle to implementing a Condor-G solution was the handling of
user proxies. The intended submission path for Condor-G uses only one GRAM
link. A job is first submitted locally to the Condor queue. Next, Condor-G sub-
mits the job to a remote resource using the user’s full proxy for authentication.
In order to be useful as a grid resource broker, Condor-G would have to support
two GRAM links, once from a user to the RB and again from the RB to the
resource. As things were, a user would use his full proxy to authenticate with
the RB machine, and send his job to the Condor-G jobmanager with a limited
proxy. The job would then sit in the queue indefinitely because the limited

proxy can not be used to authenticate with any resources. A way had to be
found to send a full proxy to the resource broker.

After searching online mailing lists, a way was found to modify the GRAM
client libraries so that users could delegate full proxies. This solution was how-
ever far from ideal. First of all, once this change was made, users could no
longer delegate limited proxies. Also, this modification would have to be ap-
plied by anyone who would submit jobs directly to Grid Canada. Secondly, this
fix would not work for the link with TRIUMF since no jobs there would have
full proxies. Using this would have entailed changing the way LCG operates
which was not an option.

The answer was to use MyProxy [10], an online credential repository system.
This system allows users to store their credentials on a server and to later
retrieve them. It is possible to store one’s full proxy in a repository and to later
retrieve it using only a limited proxy. The Condor-G jobmanager was further
modified to retrieve a user’s full proxy before submitting his job to the queue
so that Condor-G could then submit the job on the user’s behalf to a resource.
The only requirement was that users (both Grid Canada and LCG) store their
proxies in one of CERN’s or Grid Canada’s MyProxy servers before submitting
a job.

As mentioned above, Condor has built in facilities to match jobs and re-
sources. Condor’s matchmaking system is based on something called ClassAds.
A ClassAd is analogous to the ads in a newspaper’s classified section. Every job
has its own ClassAd which lists its requirements such as required memory, clock
speed, maximum acceptable load on a machine, and etc. Every resource also
has its own ClassAd listing its attributes. Condor reads all the ClassAds and
uses the information in them to match jobs to resources. The job ClassAds are
usually written by the submitter, but to simplify things with the RB, they are
written by the jobmanager and are all identical to each other. Ideally, ClassAds
for the Grid Canada resources would be generated using information in the Grid
Canada GIIS and advertised to the Grid Canada RB. A cumulative ClassAd
for the entire grid which would represent it as a single resource would also be
generated and sent to the TRIUMF RB. The problem was that the information
published in the Grid Canada GIIS was not particularly useful for this purpose.
Nor was it in a format compatible with what LCG uses. Changing the GIIS
was resulting in unforeseen complications. So to get a working system up and
running as quickly as possible, a set of Perl and shell scripts were written to
generate the resource and grid ClassAds.

2.4.5 Results

The ClassAd scripts worked well. Condor at both at Grid Canada and TRI-
UMF read them and accepted the resources they described.

In limited tests, simple jobs were able to pass from the TRIUMF RB, to the
Grid Canada RB, and to a Grid Canada resource. Unfortunately, the system
began to fail. Jobs would be sent the Grid Canada RB, get matched to a re-
source, but never be sent there. Extensive debugging and testing to resolve this
problem was not done before the writing of this report due to time limitations.

3 Conclusions

Although the Grid Canada Condor-based resource broker was not yet fully
functional, it showed the ability to link two computational grids.

4 Recommendations

The Grid Canada GIIS should be modified so that its information can be
used to generate resource ClassAds. The problem causing jobs to remain in the
queue after they have been matched to a resource needs to be resolved so that
the Grid Canada resource broker can be extensively tested for stability. Finally,
it may be worthwhile to develop a reserved ticketing based resource broker to
allow for greater scalability.

10

References

[1]

2]

[3]

M. Barnett, "The ATLAS Experiment,” [Online Document], Available at
HTTP: http://atlasexperiment.org/ index.html

”ATLAS at Victoria: The Energy Frontier,” [Online Document], Available
at HT'TP: http:// particle.phys.uvic.ca/ web- atlas/ atlas/ overview/

W. Tomlin,”LHC Computing Grid Project (LCG) Home
Page,” [Online Document], 2003 Dec 10, Available at HTTP:
http://lcg.web.cern.ch/LCG/

I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations,” The International Journal of High Perfor-
mance Computing Applications, vol. 15, no. 3, pp. 200-222, 2001.

Globus Webmaster, The Globus Alliance, [Online Document], 2004 April
27, Available at HTTP: http://www.globus.org

Globus Webmaster, ”Overview of the Grid Security Infrastructure (GSI),”
[Online Document], 2003 May 19, Available at HTTP: http://www-
unix.globus.org/security /overview.html

Globus Webmaster, "Resource Managements,” [Online Doc-
ument], 2004 March 31, Available at HTTP: http://www-
unix.globus.org/developer /resource-management.html

L. Klektau, "Running ATLAS Experiment Simulations on a Grid En-
vironment,” [Online Document], 2004 Jan 4, Available at HTTP:
http://grid.phys.uvic.ca/docs/report-lila.pdf

Condor-Admin, ”Condor Project Homepage,” [Online Document], 2004
April, Available at HTTP: http://www.cs.wisc.edu/condor/

J. Basney, S.S. Chetan, J. Gawor, D. Kouril, J. Novotny, M. Ruda, B.
Temko, V. Welch, "MyProxy Online Credential Repository,” [Online Doc-
ument], Available at HT'TP: http://grid.ncsa.uiuc.edu/myproxy/

11

