
University of Victoria
Faculty of Engineering

Fall 2006 Work Term Report

AutoXen:
Automating Virtual Machine Deployment Within the

Grid

Department of Physics and Astronomy
University of Victoria

Victoria, Canada

Angela Norton
0025775

Computer Science
anorton@uvic.ca

January 2, 2007

In partial fulfillment of the requirements of the Bachelor of Science Degree

Supervisor’s Approval: To be completed by Co-op Employer
I approve the release of this report to the University of Victoria for evaluation purposes only.
This report is to be considered: NOT CONFIDENTIAL CONFIDENTIAL

Signature Position Date

Name Email Fax

Contents

1 Report Specification 1
1.1 Audience . 1
1.2 Prerequisites . 1
1.3 Purpose . 1

2 Introduction 2

3 Motivation 2

4 Architecture 4
4.1 AutoXen Script . 5
4.2 Xen Metaconfiguration File 6
4.3 Issues . 8

5 Summary 9

Bibliography 10

1 Report Specification

1.1 Audience

The intended audience for this report includes my supervisors and any future

developers on this project.

1.2 Prerequisites

Necessary prerequisites for understanding the material contained within are

a good understanding of computer systems and some familiarity with grid

computing and virtualization concepts.

1.3 Purpose

This report aims to give future developers a solid background and motivation

for this project, a good overview of the architecture, and an understanding of

the design decisions made. Further technical details are left to documentation

on the group wiki.

1

2 Introduction

This paper describes the motivation for and architecture of our automated

Xen domain deployment system, called AutoXen. The information on the

wiki[5], under “Xen Project”, is meant as a more technical supplement to

this paper.

Xen is a Linux virtual machine environment that provides near-native

performance1 through a technique called paravirtualization. Essentially, para-

virtualization allows the guest operating system (OS) some direct hardware

access, instead of virtualizing the entire hardware interface. Xen requires

both the host and guest operating systems to run modified kernels to support

this.

The grid environment targeted by this project was GridX1, a joint Cana-

dian endeavour involving the Universities of Alberta, Calgary, McGill, Simon

Fraser, Toronto, and Victoria, as well as the National Research Council in

Ottawa and the TRIUMF Laboratory in Vancouver.[3] GridX1 computers use

the Globus Toolkit as middleware, to allow users to submit computationally

intensive jobs from their workstations and receive the results back from

whichever compute element was assigned the job.

3 Motivation

Many applications are compiled against specific versions of support libraries

that exist on a certain version of a single operating system. An example of

1Depending on the application, performance can be up to 100% of native speed, but
averages 90%.

2

such an application would be the ATLAS[1] software from CERN[2]. ATLAS

is compiled to run on Red Hat Enterprise Linux 3. However, the WestGrid

cluster runs SuSE Linux, which means that even if all other resources are

busy and WestGrid has available resources, ATLAS jobs still cannot run

there.

Few groups can take the time, effort, and money to make sure that their

application runs on multiple different operating systems and all the revisions

to each one. Support libraries can change dramatically between versions,

forcing an application that is written to and compiled against one version

to require that particular one, not previous nor later versions. Additionally,

for intensive computations that rely heavily on the code being “correct” to

produce the right answer, different versions of libraries or OS kernels may be

unacceptable to the researchers.

All of these factors limit the true number of resources available to a job

when it is submitted to the grid. One very promising solution to this is

to integrate on-demand virtual machines into the grid. By installing Xen

on worker nodes in the grid, we hope to homogenize the grid operating

environment from the point of view of the application developer. If a developer

is writing a program that runs on SuSE Linux, she can be sure it will run on

a Xen-enabled grid. She doesn’t need to worry about which OS she should

be targetting in order to get maximum CPU time based on what is the most

popular OS on grid machines.

3

Figure 1: Original Architecture Plan

4 Architecture

The goal (see Figure 1) for this project is to implement a transparent system

whereby a user could submit jobs to the grid, and with minimum extra effort,

run them within a Xen guest domain. Job results would be staged back to

the user’s workstation just like regular grid jobs.

A “Xen Image Store” (XIS) would contain preassembled disk image files

for Xen to boot. The XIS may be stored locally, or on another machine.

Alternatively, the user can assemble their own disk image file, and upload it

to the XIS.

Job input files must either be staged in using Globus’ GridFTP service,

or exist within a disk image that the guest domain will mount. For larger

input sizes, or for jobs that will be repeatedly run using the same inputs, the

4

latter would use less bandwidth, given a local XIS.

4.1 AutoXen Script

AutoXen was designed to be a quick and simple way to automatically run

a Xen guest domain given a set of configuration options. It is written in

Perl, the language of choice for this group. It uses several publicly-available

modules for XML validation and processing as well as command line option

parsing. AutoXen takes an XML file, called a Xen Metaconfiguration File

(XMF), as input. The XMF contains configuration options for the requested

Xen guest domain and the job to run inside that domain.

Figure 2: AutoXen Process

Figure 2 depicts the process AutoXen takes to customize and run a Xen

domain for a job. The scripts starts with validating the given XMF file

against the XML Schema, and if it passes, begins to process the various

sections. Most of the entries in the XMF are reformatted and written to a

temporary Xen configuration file. Others, such as filesystemtype, are needed

5

in the next step, which is mounting the root disk image and writing the

appropriate /etc/fstab. The job command to be run is written into a script

in /etc/xenjobs.d to run on bootup. Finally, AutoXen unmounts the disk

image, deletes the mountpoint, and starts the Xen guest domain.

4.2 Xen Metaconfiguration File

The XML Schema that the XMF is validated against can be inspected below:

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="xenmetaconfig">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="general">

7 <xs:complexType>

8 <xs:sequence>

9 <xs:element name="memory" type="xs:integer"/>

10 </xs:sequence>

11 </xs:complexType>

12 </xs:element>

13 <xs:element name="imagefile" maxOccurs="unbounded">

14 <xs:complexType>

15 <xs:sequence>

16 <xs:element name="filesystemtype" type="string"/>

17 <xs:element name="mountpoint" type="string"/>

18 <xs:element name="blockdevice" type="string"/>

19 <xs:element name="url" type="string"/>

20 </xs:sequence>

21 </xs:complexType>

22 </xs:element>

23 <xs:element name="job">

24 <xs:complexType>

25 <xs:sequence>

26 <xs:element name="command" type="xs:string"/>

27 </xs:sequence>

28 </xs:complexType>

6

29 </xs:element>

30 </xs:sequence>

31 </xs:complexType>

</xs:element>

</xs:schema>

This schema specifies the name and number of multiples allowed for each

element in an XMF. The general section contains one element, memory,

which is the amount of memory that the guest domain is to be allocated. The

imagefile section, of which there may be more than one, specifies the location

and type of a disk image file. The elements contained within an imagefile

section must always occur in the above order: filesystemtype, mountpoint,

blockdevice, url.

The element filesystemtype contains a string that specifies the format of

the disk image: swap, ext3, xfs, etc. Because this string will be written to

the guest domain’s /etc/fstab, it must be a valid mount type. The element

mountpoint specifies where on the filesystem this image will be mounted (e.g.

/home). This value is also used in generating the guest domain’s /etc/fstab.

The element blockdevice specifies the “device” that the guest domain will

refer to it by (e.g. /dev/hda1). Finally, url specifies where on the local

filesystem the disk image is located.

The job section specifies what command should be run on startup of the

domU. At this point, only one job section is allowed.

7

4.3 Issues

There are several issues still to be solved before AutoXen can be used in a

production context. Most importantly, I/O from the job must be staged back

to the user’s workstation from the Xen guest domain. This may mean that

the guest domains need to be grid-aware in order to use GridFTP to send

the output back. Once this is resolved, the next issue is how to deal with

guest domains that have finished running a job and are now idle. Currently,

they run until manually shut down, but in a production system, this is not

feasible, since each domain consumes resources which are then unavailable

to the host.

Additionally, there are questions as to who will build the disk images:

the user, or a designated support person. Users not familiar with the tasks

of bootstrapping an OS into a disk image will likely be intimidated by the

process. This could be a significant barrier to wider adoption of AutoXen.

It may be possible for a system administrator to build a number of different

images, each targetted at a particular application, and provide those to users.

There are also security issues with allowing anyone to build and run arbitrary

images, which points to the need for some sort of digital signing of disk

images.

Closely connected with this last issue is the problem of shipping multiple

gigabyte files around the grid. At these sizes, bandwidth used on average per

job will increase, along with the start-up time costs for Xen jobs. If users

have to wait an extra hour or two for their jobs to run, this could be an

additional barrier to adoption of this system.

8

5 Summary

The AutoXen project proved that using Xen in a grid environment is feasible.

Several challenges were solved this semester, including initial architecture

design, disk image customization, and permission/sudo issues. AutoXen is

a lightweight solution to the problem of how to integrate Xen into the grid.

With a few additional feature additions, AutoXen will be ready to roll out to a

real cluster and run real jobs for a select group of users who are knowledgeable

enough to make and customize their own disk images.

9

References

[1] A Toroidal LHC ApparatuS (ATLAS); http://atlas.ch/, Accessed
December 11, 2006

[2] Organisation Europenne pour la Recherche Nuclaire (CERN); http://
public.web.cern.ch/Public/Welcome.html, Accessed December 11,
2006

[3] GridX1: A Canadian Computational Grid; http://www.gridx1.ca,
Accessed December 18, 2006

[4] LHC; http://public.web.cern.ch/Public/Welcome.html, Accessed
December 11, 2006

[5] GridX1 Wiki; http://wiki.gridx1.ca, Accessed December 18, 2006

10

