
University of Victoria
Faculty of Engineering

Winter 2010 Work Term Report

Dynamic Resource Distribution Across Clouds

Department of Physics
University of Victoria

Victoria, BC

Michael Paterson
V00214440

Work Term 4
Software Engineering

mhp@uvic.ca

April 21, 2010

In partial fulfillment of the requirements of the
Bachelor of Software Engineering Degree

1

Contents

1 Report Specification 3
1.1 Audience . 3
1.2 Prerequisites . 3
1.3 Purpose . 3

2 Introduction 3

3 Outline of user fairness issue 4

4 Approach to improving user fairness 5

5 Implementation details 5

6 Results 6
6.1 Areas where improvement is needed . 6

6.1.1 Resource Distribution Calculations . 6
6.1.2 The shutdown of Virtual Machines . 6

6.2 Proposed enhancements . 7
6.2.1 Improvement of distribution decisions based on resource metrics 7
6.2.2 Improvements to selecting machines to shutdown . 7

7 Conclusion 7

8 Future Work 7

9 Acknowledgments 7

10 Glossary 8

List of Figures

1 The Overall Architecture of Cloud Scheduler . 4
2 Cloud Scheduler Main Data Structures . 5
3 Condor’s Pool Architecture[5] . 6

2

Dynamic Resource Distribution Across Clouds

Michael Paterson
mhp@uvic.ca

April 21, 2010

Abstract

The Cloud Scheduler is a cloud enabled distributed resource manager, being developed at the University
of Victoria. Using the Cloud Scheduler allows processing jobs to be submitted to a job queue and have
the appropriate virtual machine provisioned to run the jobs across multiple cloud installations. The
early releases of the Cloud Scheduler only supported a First In First Out(FIFO) provisioning of virtual
machines. In order to support multiple users and give each of them fair access to the available computing
resources, it was necessary to provide dynamic provisioning of resources as new users submitted processing
jobs, and existing jobs finished execution. The latest version of the Cloud Scheduler now supports a basic
dynamic resource distribution implementation that treats all virtual machines the same with regard to
resource usage. In future releases the Cloud Scheduler will take the actual resource consumption of
the virtual machines memory, CPU cores, and other metrics into account when determining resource
distribution.

1 Report Specification

1.1 Audience

This report is intended for members of the High Energy Physics Grid Computing Group at the University of
Victoria, and future co-op students. In addition to those wishing to know more about the internal workings
of Cloud Scheduler.

1.2 Prerequisites

A general understanding of virtualization, distributed computing, clusters, and batch job processing is as-
sumed.

1.3 Purpose

The report provides an overview of Cloud Scheduler, Nimbus, and Condor. With a discussion of using the
information provided by each of the aforementioned to manage virtual machines and create a fair distribution
of resources for users. Possible enhancements to the scheduling algorithm and other metrics to consider in
creating the distributions are also covered.

2 Introduction

The execution environment requirements of HEP applications are frequently dependent on the specific ver-
sions of the tools under which they were written. This makes maintaining dedicated execution environments
unfeasible particularly for older applications which do not run on current operating systems. Using Virtual
Machines(VMs) alleviates this problem by allowing the customized VM to be deployed on to any cluster
with a Virtual Machine Manager(VMM) such as Xen[1] that handles the creation, execution, and shutdown

3

Figure 1: The Overall Architecture of Cloud Scheduler

of VMs. Infrastructure-as-a-Service(IaaS) clouds like Amazon EC2[2] allow remote deployment of virtual
machines. Other IaaS platforms are available such as Nimbus[3], which provide services for creating and
managing virtual machines through a VMM on a cluster. The ability to virtualize operating systems on a
cluster can greatly increase the availability of computing resources to users.

In order to make use of computing resources available at different sites, a user would require valid
credentials at each location to start VMs. However, users would still need convenient way to submit their
processing jobs to these created VMs. Cloud Scheduler[4] alleviates the problem of multiple credentials by
providing a single location to submit jobs. It does this by allowing users to submit their batch processing
jobs to a central Condor job queue. Cloud Scheduler then provisions VMs that are required to run jobs in
the queue. Figure 1 shows the overall architecture of Cloud Scheduler, which typically runs alongside the
Condor Central Manager. The VM images include an installation of Condor so that they can register with
the central Condor manager so Condor can begin submitting jobs to those VMs. To better support multiple
users submitting jobs to Cloud Scheduler, the user fairness algorithms need to be improved to manage the
resources so each user receives processing time.

3 Outline of user fairness issue

The first implementation of Cloud Scheduler’s user fairness only took into consideration the case of all users
submitting their jobs at the same time. Cloud Scheduler would check each user’s job queue and start VMs
in a round robin manner until no more resources were available, or no more jobs needed to be scheduled. In
the case that a single user submitted enough jobs to fill all the available resources and still had jobs waiting
in the queue, all subsequent users would get no computing resources until all jobs submitted by the first user
had been drained from the queue and their VMs were shutdown.

4

Figure 2: Cloud Scheduler Main Data Structures

4 Approach to improving user fairness

To get a fair distribution of VMs for users working it was decided to aim for reasonably fair as a starting
point. In the first round of designing the solution to fair resource distribution all VMs were treated the same
with regards to their actual resource usage. In reality VMs may be multiple or single CPU-core, and one or
more gigabytes of memory, but the complexity to account for those differences can be added in later once
the basic algorithm is working. To come up with a fair distribution the job requests can be examined for
all users, this gives a desired distribution. The desired distribution is then compared with what is actually
running and then adjustments are made by shutting down VMs that are in excess, and starting VMs that
are lacking.

5 Implementation details

User job requests are gathered from the Condor Scheduler daemon web-service and parsed into an internal
representation, sorted by user and priority, for the Cloud Scheduler. Each user has a priority sorted list of
jobs. Using the job lists, a simple distribution of requested VM types is calculated. The Cloud Scheduler then
calculates the current distribution of VMs that it has started, currently this is a simple distribution where
each type is counted and divided by the total number of VMs. The difference between the distribution of the
currently running VMs, and the user request is taken. If the difference is negative more VMs of that type need
to be created. If the difference is positive, that type of VM becomes a candidate type to shutdown. Figure 2
shows the primary data structures of Cloud Scheduler that have to be iterated through to produce the
distributions. When the Cloud Scheduler tries to start new VMs for users it checks against the distribution
difference to make sure a VM of the requested type is allowed to be created. Once scheduling decisions
have been made the Cloud Scheduler attempts to remove unused machines or find machines that can be
shutdown to re-balance resources. The Cloud Scheduler keeps track of the machines it has booted, but has
no knowledge of what those machines are currently doing. To find out more information about a particular
VM, the Condor Collector web-service is queried, Figure 3 shows the locations of Condor’s daemons. The
Condor Collector service provides a list of all the machines registered with Condor, and includes information
about what job that machine is running. Condor returns machine information as a Condor classad data
structure. The classad structure needs to be parsed into a more usable data structure before being used.
The Cloud Scheduler compares the latest information with the previous output and tries to find VMs that
have just finished executing their job and have started executing a different job id. If the job id has changed
between scheduling cycles they are tagged and then checked against the distribution differences and if a VM

5

Figure 3: Condor’s Pool Architecture[5]

of a type with a positive difference is found it flagged for shutdown. Using the parsed information from
Condor the Cloud Scheduler can check for idle and unused machines to shutdown, and also shutdown any
machines that had been previously flagged. On the next scheduling cycle the Cloud Scheduler should have
the resources available to create a VM of a type that is under-represented in the system. As running jobs
finish, their VMs will be shutdown as needed until the system reaches a state of reasonable fairness across
the users’ requested VM types.

6 Results

The initial test results are positive. Using a small cluster with limited space to create VMs a single user
submitted enough jobs to occupy all available resources. Once the resources were filled a second test user
submitted jobs to the system. The Cloud Scheduler was able to correctly identify finishing jobs and shutdown
those machines then create VMs for the second users jobs to run. A subsequent test using 3 users submitting
jobs identified an issue where a VM would be shutdown then recreated due to the nature of the distribution
differences. This causes some inefficiency in the system and later versions of the Cloud Scheduler will address
this issue.

6.1 Areas where improvement is needed

6.1.1 Resource Distribution Calculations

Currently all VMs are treated as using the same amount of resources. If one user has VMs that require
multiple CPU cores and several gigabytes of RAM, and another only requires a single CPU core with one
or two gigabytes of RAM, both users will get roughly the same number of VMs but the first user will be
consuming a larger share of the resources.

6.1.2 The shutdown of Virtual Machines

When selecting virtual machines to shutdown for distribution balancing, the Cloud Scheduler will find
machines where a job has finished and a new job has just started. This causes a job to be preempted and

6

rescheduled. There is a potential for this behavior to cause problems if the job is able to run long enough
and make a change to some external entity, such as a database.

6.2 Proposed enhancements

6.2.1 Improvement of distribution decisions based on resource metrics

Presently resource distribution works as outlined in Section 6.1.1. To ensure users get a fair distribution of
the actual resources available, the RAM, CPU-cores, and disk space will be converted into a 3-dimensional
volume representing the resource usage.

6.2.2 Improvements to selecting machines to shutdown

To avoid any problems caused by jobs being preempted and rescheduled when their machine is shutdown,
it’s desirable to have machines stop accepting new jobs. Methods of preventing job submission are being
explored. It is not known whether any solution found will work on all cloud systems, as there are minor
differences between various IaaS software. A partial feature has been implemented to target machines that
are still in a Starting state to shutdown, since these machines are not doing any work. There is currently
a problem in shutting down a machine in a Starting state, in that a job may have it’s machine terminated
and not be rescheduled, this is caused by how Cloud Scheduler moving the job into a scheduled queue
once a VM has been created. Once the starvation issue with shutting down Starting machines this feature
will be implemented. A tolerance range should be added to try to prevent VM thrashing, where a VM
repeatedly boots and shuts down. There are cases where the creation of an additional machine of a certain
type immediately flags that type to be shutdown, only to be restarted again since the removal of the VM
makes it a candidate for creation.

7 Conclusion

The current implementation of resource distribution does a reasonable job of giving each user a share of the
available computing resources, as long as the requirements of the virtual machines are similar. The current
algorithm fixes the serious issue of having a single user occupying all the resources with only a single type
of virtual machine. This will allow multiple users to start using the Cloud Scheduler for work and start
providing feedback into features they would like to see and assisting in finding bugs that were not found
during testing.

8 Future Work

The Cloud Scheduler is in on-going development. There are still several major features that need to be
added. Integration of the Cloud Aggregator[6] to provide better reporting between Nimbus and the Cloud
Scheduler. The state of the Cloud Scheduler needs to be persisted to recover from crashes or restarting the
scheduler. Enhancements to the Cloud Status tool to provide more information on the state of the Cloud
Scheduler, particularly in regard to job information. The resource distribution algorithms will be extended
to use a more sophisticated calculation to account for memory and CPU core usage to give a more accurate
picture of how the computing resources have been allocated.

9 Acknowledgments

I would like to thank Dr. Randall Sobie for this work term opportunity. Thanks to Patrick Armstrong for
guidance on this work term. Additional thanks Ron Desmarais, Ian Gable, and Duncan Penfold-Brown for
technical help and advice.

7

10 Glossary

GT4 Globus Toolkit 4. The de facto grid middle ware.

LRMS Local Resource Management System. Manages jobs on local clusters.

VM Virtual Machine, an instance of a machine(computer) running in software.

VMM Virtual Machine Monitor, used for managing virtual machines.

Xen Open-source VMM used by Nimbus.

8

References

[1] Xen hypervisor - http://www.xen.org/

[2] Amazon Elastic Compute Cloud - http://aws.amazon.com/ec2/

[3] Nimbus http://workspace.globus.org/index.html

[4] Cloud Scheduler http://github.com/hep-gc/cloud-scheduler/

[5] Condor Pool Architecture - http://www.cs.wisc.edu/condor/manual/v6.2/3 1Introduction.html

[6] Cloud Aggregator http://github.com/hep-gc/cloud-aggregator

9

